Home Ask Archive Facebook Theme
Aspiring Pathololgist with a morbid curiosity
46 notes
1 day ago - Reblog
smellslikecadaverine:

Right temporal region with a round wound with blackened and seared skin margins, typical characteristics of an entrance gunshot wound; you can also see right otorrhagia residues.

smellslikecadaverine:

Right temporal region with a round wound with blackened and seared skin margins, typical characteristics of an entrance gunshot wound; you can also see right otorrhagia residues.

4 notes
1 day ago - Reblog
myradfindings:

just a little subcutaneous emphysema (& right pneumothorax & pneumomediastinum & pneumopericardium).

myradfindings:

just a little subcutaneous emphysema (& right pneumothorax & pneumomediastinum & pneumopericardium).

209 notes
2 days ago - Reblog

hackelini:

Some pictures from the Body Worlds exhibit! There was much much more and a lot of explanation for organs’ duties, how cells work and the like and
it was just very interesting and exciting. The atmosphere there sure was one of a kind

(via themanfrombeyond)

877 notes
4 days ago - Reblog
malformalady:

Postmortem drying of the tongue. Tongue protrusion between clenched teeth is a common finding in a typical hanging death.

malformalady:

Postmortem drying of the tongue. Tongue protrusion between clenched teeth is a common finding in a typical hanging death.

(via zrunicornpie)

483 notes
5 days ago - Reblog

neuromorphogenesis:

Einstein’s Corpus Callosum Explains His Genius-Level Intellect

Einstein was undoubtedly one of the most influential physicists of all time, advancing concepts in quantum physics and gaining enormous notoriety for his theory of relativity. Einstein was also a keen philosopher, proclaiming that “… independence by philosophical insight is… the mark of distinction between mere artisan or specialist and a real seeker of truth.

It comes as no surprise that Einstein’s brain appears physiologically distinct from that of the average individual. A recent study has sought to explain the man’s genius-level intellect, in part, based a difference in a structure called the corpus callosum.

Einstein’s Autopsied Brain

Many have attempted to understand what inspired the German-born prodigy. A pathologist, named Dr. Thomas Stoltz Harvey, working at Princeton University, even attempted to establish whether there was a physiological trait that could explain the inner workings of Einstein’s extraordinary mind.

Einstein died from internal bleeding, following a ruptured abdominal aortic aneurysm. In 1955, Harvey, who was responsible for conducting Einstein’s autopsy, removed his subject’s brain, without requesting the permission of his family. Harvey then preserved Einstein’s brain in formalin, before snapping a vast number of photographs. After documenting the details of the specimen, he carved it up into approximately 240 individual sections, with the principal ambition of allowing the scientific community to research what made Einstein so truly remarkable.

Harvey retained his photographs to write a book, which he was never able to finish. Following Harvey’s demise, his family decided to donate the images to the National Museum of Health and Medicine in Washington, during 2010.

Decades after Einstein’s departure, it seems scientists are finally able to figure out the mysteries of the great man’s brain.

The Corpus Callosum Study

The latest research study, entitled The Corpus Callosum of Albert Einstein’s Brain: Another Clue to His High Intelligence, was published in the research journal Brain.

The study demonstrated that the association between the left and right hemispheres of Einstein’s brain were atypical, with enhanced connection between these two parts. Evolutionary Anthropologist, Dean Falk, of Florida State University, collaborated on the project. Falk explains how the study offers greater insight into the illustrious physicist’s brain, improving upon prior research studies.

The part of the brain that connects the two hemispheres of the brain is known as the corpus callosum (A.K.A. the colossal commissure), a bundle of neuronal fibers that sits beneath the cerebral cortex, uniting the two hemispheres in the brains of higher order mammals.

The study, which was led by Weiwei Men of East China Normal University, managed to establish a novel technique to explore the “internal connectivity” of Einstein’s corpus callosum, for the very first time.

Using their new method, the team were able to determine the relative thickness of various subdivisions throughout length of the corpus callosum. These differences in thickness were then color-coded to provide the research group with an approximation for the number of neurons stretching between the left and rights hemispheres; a thicker corpus callosum suggests there to be a greater number of neurons.

In addition, different regions of the corpus callosum are implicated in specialist functions. For example, neurons situated at the front of this interlinking region of the brain are involved in movement of hands, whilst neurons running along its posterior are thought to be implicated in mental arithmetic.

The researchers applied their technique to compare Einstein’s corpus callosum to two sample groups, including one group of over a dozen elderly men, and another group of 52 men that were Einstein’s age in 1905. 1905 was a pivotal year in Albert Einstein’s life, publishing seminal articles on Brownian motion, the special theory of relativity, the photoelectric effect, as well as work that yielded the renowned E = mc2 formula.

Following their study, the researchers concluded that Einstein’s brain demonstrated more extensive connections at particular points along the corpus callosum. The team suggest this could, at least partially, explain some of Einstein’s supreme intellectual abilities.

Other Studies

Falk and his colleagues had investigated Einstein’s brain on a previous occasion, in 2012. Simply through analysis of Harvey’s autopsy photographs, the team were able to visibly identify features of Einstein’s brain that could be fundamental to the man’s intellect. They found greater intricacy and convolution patterns across certain regions of his brain, particularly the prefrontal cortex, the visual cortex and the parietal lobes.

The prefrontal cortex is critical to abstract thinking, decision-making and expression of personality traits, whilst the parietal lobe is involved in sense and motor function. Intriguingly, Falk’s group found that the somatosensory cortex, which receives sensory input information, was also increased in magnitude in an area that corresponded to his left hand. As Einstein was an avid violinist, after having been inspired by a number of Mozart’s pieces at age 13, the group drew a correlation between this enlarged cortical region and his musical aptitude.

According to Live Science, Sandra Witelson, a scientist based at McMaster University, who has performed prior studies into Einstein’s brain, explained the physiological difference in the physicist’s neural tissue:

“It’s not just that it’s bigger or smaller, it’s that the actual pattern is different… His anatomy is unique compared to every other photograph or drawing of a human brain that has ever been recorded.”

Marion C. Diamond and colleagues, working at the University of California, published an article in 1985, called on the brain of a scientist: Albert Einstein. Fascinatingly, after performing microscopic cell counts, they found Einstein had an exceedingly high ratio of glial cells (a non-neuronal support cell) to regular neuronal cells, in two parts of his brain.

It seems that Albert Einstein’s thicker corpus callosum may have been partly responsible for his genius-level intellect. However, it is likely that a combination of physiological factors played a part shaping the enigmatic theoretical physicist. The question is, will there ever be another extraordinary mind like Einstein’s?

(Source: guardianlv.com, via nelsonlaugh)

4 notes
5 days ago - Reblog

So ‘arach’ isn’t a prefix? It doesn’t mean spider or web-like? no? ok

14 notes
5 days ago - Reblog
clulessmedic:

Chilaiditi’s Sign
consider this if "free air” is seen under the diaphragm 
a loop of bowel is trapped between the liver and diaphragm giving the impression of pneumoperitoneum
often associated with previous liver or abdominal surgery

clulessmedic:

Chilaiditi’s Sign

  • consider this if "free air is seen under the diaphragm 
  • a loop of bowel is trapped between the liver and diaphragm giving the impression of pneumoperitoneum
  • often associated with previous liver or abdominal surgery

(via cluelessmedic)

26 notes
6 days ago - Reblog
clulessmedic:

Subtrochanteric Hip Fracture 
less common than more proximal fractures
they are less stable, and provide a more difficult challenge to fix
managed with an intramedullary hip screw

clulessmedic:

Subtrochanteric Hip Fracture 

  • less common than more proximal fractures
  • they are less stable, and provide a more difficult challenge to fix
  • managed with an intramedullary hip screw

(via cluelessmedic)

236,218 notes
1 week ago - Reblog
shawnali:

The first time I held a human brain in Anatomy Lab I was completely speechless. I looked at my classmates expecting a similar reaction and they looked back at me confused like…”dude let’s start identifying the structures.” I had to take a step back and let it process…in my hands was someone’s entire life. From start to finish, every memory, every emotion, every bodily control…was right there in my hands. 

shawnali:

The first time I held a human brain in Anatomy Lab I was completely speechless. I looked at my classmates expecting a similar reaction and they looked back at me confused like…”dude let’s start identifying the structures.” I had to take a step back and let it process…in my hands was someone’s entire life. From start to finish, every memory, every emotion, every bodily control…was right there in my hands. 

(via mo-mtn-girl)

352 notes
1 week ago - Reblog
scienceyoucanlove:

A femoral head with a cortex of cortical bone and medulla of trabecular bone. Both red bone marrow and a focus of yellow bone marrow are visible .
What are the differences between red and yellow bone marrow?Bone marrow is an integral part in the life of a human being, and it functions as the stemming-up region for many of the blood cells, including the red blood cells that carry oxygen from lungs to the other tissues. Furthermore, as it involves the production of white blood cells, which directly impinges on immunity, bone marrow failure can lead to poor immune response and to an increased susceptibility towards infections. Because of these reasons, the bone marrow failure would be detrimental to human life, and it may even lead to fatal outcomes when there is no other way to compensate.Bone marrow would contain precursor cells from which all other types of cells stem out and would also consist of many of the precursor cells that it had already produced. Apart from these two, the marrow would also consist of matrix cells, as well as fat cells to a certain extent. In a healthy person, the marrow would account for about four percent of the body weight, and it can be classified into red and yellow bone marrow according to its location, color and from the cells that are present in abundance.
The red marrow:This is the main marrow that gives rise to all the red blood cells, white blood cells and the platelets and is located in the flat bones such as hip bones, skull bone, ribs, breast bone and the vertebrae. During the fetal life and in early childhood, many of the long bones would also contain red marrows, although they become ossified and replaced within few years. But the left over red marrow will prevail throughout life according to the requirements of the human body and would continue to function even when a person reaches the elderly stage. In certain instances, many diseases including cancers, infections and inflammatory conditions can affect the bone marrow and, at times, certain medical treatments such as radiation can also affect the marrow.The yellow marrow:Yellow marrow is located in the hollow centers of the long bones, such as in the legs and in the arms, and yellow marrow largely consists of fat cells although it will have a different role from that of normal fat cells. Although the initial bone marrow present in a newborn would be of the red marrow variety, it will be converted into yellow marrow at desired locations by the age of five years.Basically, these fat cells are the last resort for the body’s energy requirements and can be consumed in an event of extreme hunger. But their important function that is performed in relation to formation of cellular elements is their ability to convert themselves into red marrow in case of large volume blood losses that would deprive the body of oxygen-carrying capacity in certain instances. The yellow marrow, being so efficient, would be able to convert itself within one to two hours to take over the role of red marrow, and this is one of the natural reserves to sustain life in extreme events.
read more

scienceyoucanlove:

A femoral head with a cortex of cortical bone and medulla of trabecular bone. Both red bone marrow and a focus of yellow bone marrow are visible .

What are the differences between red and yellow bone marrow?

Bone marrow is an integral part in the life of a human being, and it functions as the stemming-up region for many of the blood cells, including the red blood cells that carry oxygen from lungs to the other tissues. Furthermore, as it involves the production of white blood cells, which directly impinges on immunity, bone marrow failure can lead to poor immune response and to an increased susceptibility towards infections. Because of these reasons, the bone marrow failure would be detrimental to human life, and it may even lead to fatal outcomes when there is no other way to compensate.

Bone marrow would contain precursor cells from which all other types of cells stem out and would also consist of many of the precursor cells that it had already produced. Apart from these two, the marrow would also consist of matrix cells, as well as fat cells to a certain extent. In a healthy person, the marrow would account for about four percent of the body weight, and it can be classified into red and yellow bone marrow according to its location, color and from the cells that are present in abundance.

The red marrow:

This is the main marrow that gives rise to all the red blood cells, white blood cells and the platelets and is located in the flat bones such as hip bones, skull bone, ribs, breast bone and the vertebrae. During the fetal life and in early childhood, many of the long bones would also contain red marrows, although they become ossified and replaced within few years. But the left over red marrow will prevail throughout life according to the requirements of the human body and would continue to function even when a person reaches the elderly stage. In certain instances, many diseases including cancers, infections and inflammatory conditions can affect the bone marrow and, at times, certain medical treatments such as radiation can also affect the marrow.

The yellow marrow:

Yellow marrow is located in the hollow centers of the long bones, such as in the legs and in the arms, and yellow marrow largely consists of fat cells although it will have a different role from that of normal fat cells. Although the initial bone marrow present in a newborn would be of the red marrow variety, it will be converted into yellow marrow at desired locations by the age of five years.

Basically, these fat cells are the last resort for the body’s energy requirements and can be consumed in an event of extreme hunger. But their important function that is performed in relation to formation of cellular elements is their ability to convert themselves into red marrow in case of large volume blood losses that would deprive the body of oxygen-carrying capacity in certain instances. The yellow marrow, being so efficient, would be able to convert itself within one to two hours to take over the role of red marrow, and this is one of the natural reserves to sustain life in extreme events.

read more

(via valdanderthal)

236,753 notes
1 week ago - Reblog
perla-k:

neatpotatoes:

clamjob:

casmii:

pricklylegs:

memewhore:

I still don’t understand the perspective that’s going on here.

It`s a railing.

This fucked with my head so hard.

WAIT I STILL DONT UNDERSTAND

ITS ON TOP OF A WALL NOT GRASS

call me stupid, but that is a giant squirrel and that is all i see


Birds eye view. Hope it helps…

perla-k:

neatpotatoes:

clamjob:

casmii:

pricklylegs:

memewhore:

I still don’t understand the perspective that’s going on here.

It`s a railing.

This fucked with my head so hard.

WAIT I STILL DONT UNDERSTAND

ITS ON TOP OF A WALL NOT GRASS

call me stupid, but that is a giant squirrel and that is all i see

Birds eye view. Hope it helps…

(via shes-elecktric)

0 notes
1 week ago - Reblog
oxyj3n: I just wanted to tell you that I believe your blog is very lovely. =]

Aww thanks very much ^^

98,461 notes
1 week ago - Reblog

(Source: randaroyce, via rockstarwithnoband)

146 notes
1 week ago - Reblog
feuille-d-automne:

By CK Thorncliff , 1900~1910.
Via 

Is that Alan Davies and James Bachman?

feuille-d-automne:

By CK Thorncliff , 1900~1910.

Via

Is that Alan Davies and James Bachman?

(via undead-medic)

26,830 notes
1 week ago - Reblog

calleo:

highenergyjewtrino:

A friend linked me these because he thought they’d be relevant to me, he was extremely correct.  If these pieces of advice aren’t relevant to you, improve yourself until they are.

[source]

A good chunk of Tumblr could benefit from this.

(via derinthemadscientist)